首页> 外文OA文献 >Sequential supplementary firing in natural gas combined cycle plants with carbon capture for enhanced oil recovery
【2h】

Sequential supplementary firing in natural gas combined cycle plants with carbon capture for enhanced oil recovery

机译:天然气联合循环工厂中的顺序补充燃烧,具有碳捕获功能,可提高采油率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The rapid electrification through natural gas in Mexico, the interest of the country to mitigate\udthe effects of climate change, and the opportunity for rolling out Enhanced Oil Recovery at\udnational level requires an important R&D effort to develop nationally relevant CCS\udtechnology in natural gas combined cycle power plants. Post-combustion carbon dioxide\ud(CO2) capture at gas-fired power plant is identified and proposed as an effective way to\udreduce CO2 emissions generated by the electricity sector in Mexico. In particular, gas-fired\udpower plants with carbon dioxide capture and the sequential combustion of supplementary\udnatural gas in the heat recovery steam generator can favourably increase the production of\udcarbon dioxide, compared to a conventional configuration. This could be attractive in places\udwith favourable conditions for enhanced oil recovery and where affordable natural gas prices\udwill continue to exist, such as Mexico and North America.\udSequential combustion makes use of the excess oxygen in gas turbine exhaust gas to\udgenerate additional CO2. But, unlike in conventional supplementary firing, allows keeping\udgas temperatures in the heat recovery steam generator below 820°C, avoiding a step change\udin capital costs. It marginally decreases relative energy requirements for solvent regeneration\udand amine degradation.\udPower plant models integrated with capture and compression process models of Sequential\udSupplementary Firing Combined Cycle (SSFCC) gas-fired units show that the efficiency\udpenalty is 8.2% points LHV compared to a conventional natural gas combined cycle power\udplant with capture. The marginal thermal efficiency of natural gas firing in the heat recovery\udsteam generator can increase with supercritical steam generation to reduce the efficiency\udpenalty to 5.7% points LHV. Although the efficiency is lower than the conventional\udconfiguration, the increment in the power output of the combined steam cycle leads a\udreduction of the number of gas turbines, at a similar power output to that of a conventional\udnatural gas combined cycle. This has a positive impact on the number of absorbers and the\udcapital costs of the post combustion capture plant by reducing the total volume of flue gas by\udhalf on a normalised basis. The relative reduction of overall capital costs is, respectively, 9.1\ud% and 15.3% for the supercritical and the subcritical combined cycle configurations with\udcapture compared to a conventional configuration. The total revenue requirement, a metric\udcombining levelised cost of electricity and revenue from EOR, shows that, at gas prices of 2\ud$/MMBTU and for CO2 selling price from 0 to 50 $/tonneCO2, subcritical and supercritical\udsequential supplementary firing presents favourably at 47.3-26 $/MWh and 44.6-25 $/MWh,\udrespectively, compared with a conventional NGCC at 49.5-31.7 $/MWh.\udWhen operated at part-load, these configurations show greater operational flexibility by\udutilising the additional degree of freedom associated with the combustion of natural gas in\udthe HRSG to change power output according to electricity demand and to ensure continuity\udof CO2 supply when exposed to variation in electricity prices. The optimisation of steady\udstate part-load performance shows that reducing output by adjusting supplementary fuel\udkeeps the gas turbine operating at full load and maximum efficiency when the net power\udplant output is reduced from 100% to 50%. For both subcritical and supercritical combined\udcycles, the thermal efficiency at part-load is optimised, in terms of efficiency, with sliding\udpressure operation of the heat recovery steam generator. Fixed pressure operation is\udproposed as an alternative for supercritical combined cycles to minimise capital costs and\udprovide fast response rates with acceptable performance levels.
机译:墨西哥通过天然气实现快速电气化,该国减轻气候变化影响的兴趣以及在\国家一级实施增强石油采收率的机会,需要做出重大的研发努力,以开发与国家相关的自然科学CCS \ ud技术天然气联合循环发电厂。确定并提出了在燃气电厂燃烧后捕获二氧化碳\ ud(CO2)的建议,作为减少墨西哥电力部门产生的二氧化碳排放的有效方法。特别地,与常规构造相比,具有二氧化碳捕获的燃气/发电厂以及热回收蒸汽发生器中的补充/天然气的顺序燃烧可以有利地增加二氧化碳的产生。这可能在具有有利的条件以提高石油采收率以及天然气价格可承受的地方仍然存在,例如墨西哥和北美。\ ud有序燃烧利用燃气轮机废气中的过量氧气来进行\平衡额外的二氧化碳。但是,与传统的辅助燃烧不同,它允许将热回收蒸汽发生器中的废气温度保持在820°C以下,从而避免了分步变更\ udin的资本成本。它稍微降低了溶剂再生\ ud和胺降解的相对能量需求。\ ud与顺序\ ud补充燃烧联合循环(SSFCC)燃气装置的捕集和压缩过程模型集成的电厂模型表明,效率\ dupalty为8.2%点LHV与具有捕获功能的常规天然气联合循环发电/植株相比。热回收/蒸汽发生器中天然气燃烧的边际热效率可以随着超临界蒸汽的产生而增加,从而使效率/垂度降低到LHV的5.7%。尽管效率低于常规的\ ud构型,但是联合蒸汽循环的功率输出的增加导致燃气轮机数量的减少,与常规\ ud天然气组合循环的功率输出相似。通过将烟气的总体积标准化减少二分之二,这对燃烧器的数量和燃烧后捕集装置的工业成本都有积极的影响。与常规配置相比,具有捕获的超临界和亚临界联合循环配置的总投资成本的相对减少分别为9.1%和15.3%。总收入需求是衡量水平的电力成本和EOR收入的总和,表明以2 \ ud $ / MMBTU的天然气价格和0至50 $ / tonCO2的CO2售价计算,次临界和超临界\后续补充与传统的NGCC分别为49.5-31.7 $ / MWh相比,烧成率分别为47.3-26 $ / MWh和44.6-25 $ / MWh。\ ud在部分负荷下运行时,这些配置显示出更大的操作灵活性,利用HRSG中天然气燃烧带来的额外自由度,根据电力需求改变功率输出,并确保在面临电价变化时确保CO2供应的连续性。稳态\非稳态部分负载性能的优化表明,通过调整辅助燃料来降低输出功率,可使燃气轮机在满负荷运行时达到最大效率,并且当净功率\电厂输出功率从100%降低到50%时,效率将达到最高。对于亚临界和超临界联合循环,利用热回收蒸汽发生器的滑动/超压运行,在效率方面优化了部分负荷下的热效率。不建议使用固定压力操作作为超临界联合循环的替代方法,以最大程度地降低资金成本,并以可接受的性能水平提供快速响应速度。

著录项

  • 作者

    González Díaz, Abigail;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号